HOMEWORK 1

- **Problem 1** Prove that there are infinitely many prime numbers of the form (a) 4n + 3;
 - (b) 6n + 5.
- **Problem 2** Prove that for every natural N there exist infinitely many n such that the sequence $n, n+1, \ldots, n+N-1$ contains no prime numbers. (*Hint*: construct such n for a given N).
- Problem 3 Prove that the following numbers are not integers:
 - (a) $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, n > 1;

(b)
$$\frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}$$
, $n > 0$.

- **Problem 4** For real x denote by [x] the integer part function largest integer which does not exceed x.
 - (a) Let f(x) be continuous non-negative function in the interval $0 \le x \le R$. Prove that the number of integral points (points whose coordinates are integers) in the region $0 < x \le R$, $0 < y \le f(x)$ is given by

$$\sum_{Q < x \le R} [f(x)]$$

(summation goes over integer x).

(b) If P and Q are odd and (P, Q) = 1, prove that

$$\sum_{0 < x < \frac{Q}{2}} \left[\frac{P}{Q} x \right] + \sum_{0 < y < \frac{P}{2}} \left[\frac{Q}{P} y \right] = \frac{P-1}{2} \cdot \frac{Q-1}{2}.$$

(c) Prove that the number of integral points inside the circle $x^2 + y^2 = r^2$, r > 0, is given by

$$1 + 4[r] + 8 \sum_{0 < x \le \frac{r}{\sqrt{2}}} \left[\sqrt{r^2 - x^2}\right] - 4 \left[\frac{r}{\sqrt{2}}\right]^2$$

(d) Prove that the number of integral points in the domain x > 0, y > 0 and $0 < xy \le n$ is given by

$$2\sum_{0 < x \le \sqrt{n}} \left[\frac{n}{x}\right] - \left[\sqrt{n}\right]^2.$$