HOMEWORK 1

Problem 1 Prove that there are infinitely many prime numbers of the form
(a) $4 n+3$;
(b) $6 n+5$.

Problem 2 Prove that for every natural N there exist infinitely many n such that the sequence $n, n+1, \ldots, n+N-1$ contains no prime numbers. (Hint: construct such n for a given N).
Problem 3 Prove that the following numbers are not integers:
(a) $\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}, \quad n>1$;
(b) $\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n+1}, \quad n>0$.

Problem 4 For real x denote by $[x]$ the integer part function - largest integer which does not exceed x.
(a) Let $f(x)$ be continuous non-negative function in the interval $0 \leq x \leq R$. Prove that the number of integral points (points whose coordinates are integers) in the region $0<x \leq R, \quad 0<y \leq f(x)$ is given by

$$
\sum_{Q<x \leq R}[f(x)]
$$

(summation goes over integer x).
(b) If P and Q are odd and $(P, Q)=1$, prove that

$$
\sum_{0<x<\frac{Q}{2}}\left[\frac{P}{Q} x\right]+\sum_{0<y<\frac{P}{2}}\left[\frac{Q}{P} y\right]=\frac{P-1}{2} \cdot \frac{Q-1}{2}
$$

(c) Prove that the number of integral points inside the circle $x^{2}+y^{2}=r^{2}, r>0$, is given by

$$
1+4[r]+8 \sum_{0<x \leq \frac{r}{\sqrt{2}}}\left[\sqrt{r^{2}-x^{2}}\right]-4\left[\frac{r}{\sqrt{2}}\right]^{2}
$$

(d) Prove that the number of integral points in the domain $x>0, y>0$ and $0<x y \leq n$ is given by

$$
2 \sum_{0<x \leq \sqrt{n}}\left[\frac{n}{x}\right]-[\sqrt{n}]^{2}
$$

